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KS L “Everything should be made
> as simple as possible,

Komanawa Solutions Ltd but no simpler”

Current research

o  Future Coasts Aotearoa (MBIE Endeavour): sea level rise propagation
through aquifers, groundwater hazard assessment and adaptation

) o  Climate Shock Resilience and Adaptation (MP| SLMACC): weather
Research Practice and climate + river flow + farm economic modelling to understand risk to
primary sector + river health from increasing climate variability

e  Main consulting workstreams
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o Regional plan change - flow and nutrient limit setting

o  Community and irrigation water supply
o Mineral sand, gold mine and landfill AEE & compliance

o  Ground source heat pump feasibility and heat plume modelling

Zeb Etheridge  Matt Dumont  Evelyn Charlesworth  Jens Rekker Patrick Durney




1. Why are we passionate about detection power & monitoring design?

a.

We’'ve been heavily involved in limit setting for regional plan
change processes. FFP plan effectiveness monitoring is key but
largely absent in our experience

Strong interest from stakeholders and communities in
monitoring-based land and water management - status quo
approach does not work

We see water quality monitoring consent conditions with very
little prospect of achieving their goals

We want to empower RC practitioners to solve these issues
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Monitoring Freshwater Improvements
https://www.monitoringfreshwater.co.nz/
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These other outputs do not consider the impacts of lag. piiihe

— Which can cause problems...
Here we focus on lag & bespoke detection power assessments.



https://www.monitoringfreshwater.co.nz/

@pite a strong body of scientific evidence and increasing awareness\

amongst stakeholders, models and budgets used by policymakers in [best
management practice] planning often do not adequately represent
legacy N dynamics and associated time lags...

... [Achieving] this would support more realistic estimates of the
trajectories of change following measures to reduce N loads, managing
the expectations of stakeholders and supporting long term sustainable
agriculture. Incorporating N [lags] into improved models and budgets used in
policy and requlatory frameworks for the sustainable management of
agriculture can better meet the needs of human health and the

environment.”

- Ascott et al., 2021. The need to integrate legacy nitrogen storage
dynamics and time lags into policy and practice
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Source Concentration over time

Water we're c

sampling is not £ 50,

one age 2s-
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Proportion of water
from source at a time
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Receptor Concentration over time

. 2014-10-21
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e Lag: The wait time
between when action
happens at the source
and when something
happens at the
receptor

e Temporal Dispersion:
Mixing of different
aged waters which
smooths applied
changes

e Hysteresis*: The
historical actions at the
source that are “in the
post” and have yet to
show up at the
receptor

*I know it’s all hysteresis, but indulge
my binning for the point of
discussion.
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Effect of MRT on detection power at Harts Creek - Lower Lake Rd Reduction=20.0%

raw data

mrt-5: Source

mrt-5: Receptor, with red.
mrt-5: Receptor, no red.

mrt-10:
mrt-10:
mrt-10:
mrt-20:
mrt-20:
mrt-20:
mrt-30:
mrt-30:
mrt-30:

Source

Receptor, with red.
Receptor, no red.
Source

Receptor, with red.
Receptor, no red.
Source

Receptor, with red.
Receptor, no red.
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An example in the Whakauru Stream, Pokaiwhenua Catchment
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e baseflow dominated hydrology
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e Policy setting: target of 0.26 mg/L - from 2010-2014

measured data median

e History of intensification forest — dairy in 2008-2009

e MRT- 12, Ex. fraction - 0.7

Lake Rotorua

Mokoia Island |

\Whakauru
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Predicting source concentration from historical slope, current
concentration, and age distribution. (method implemented in python package)

Historical source concentration at Whakauru Stream

3.0 1 === current/start date
----- Linear prediction NO3-N

25 @ initial concentration for source prediction
—— predicted historical source concentration

=== predicted NO3-N from source

2.0 7 observed NOs3-N
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When establishing the pathway for
detection power. It doesn’t have
to be perfect, just in the ballpark.
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For limit setting and planning
reductions... it needs to be much

more precise We have‘to kind of feel

out the vibe
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Bayesian Approach to Source Estimation (BASE) method (talk to us)

Source Concentration

Receptor Concentration

BASE: Whakauru stream predictions as of 2022
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Bayesian Approach to Source Estimation (BASE) method (talk to us)

BASE: Whakauru stream predictions as of 2015
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Bayesian Approach to Source Estimation (BASE) method (talk to us)

BASE: Whakauru stream predictions as of 2017
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Bayesian Approach to Source Estimation (BASE) method (talk to us)

BASE: Whakauru stream predictions as of 2019
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Bayesian Approach to Source Estimation (BASE) method (talk to us)

Source Concentration

Receptor Concentration

BASE: Whakauru stream predictions as of 2022
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KSL

Alright without further ado, let’s jump into
detection power as a concept

BETTER HURRY.
YOUR MOM'S
YELLING
SOMETHING .
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You keep using those data
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I do not think they mean what you
think they mean







Main
. TYPE I ERROR: FALSE POSITIVE 7@US
Null Hypothesis TYPE TL ERROR: FALSE NEGATIVE

What we assume in the absence of TYPE TI ERROR: TRUE POSITIVE FOR o
information. Ex., there is no trend INCORRECT REASONS e
; TYPE IV ERROR: TRUE NEGATIVE FOR
in the data. INCORRECT REASONS =7
. _ TYPE ¥ ERROR: INCORRECT RESULT WHICH f!’,.
Alternative Hypothesis My favourite  LEADS YOU TO A CORRECT —
. CONCLUSION DUE TO Q
What we would like to prove. Ex., UNRELATED ERRORS Q)
There is a trend in the data. TYPE I ERROR: CORRECT RESULT WHICH o
YOU INTERPRET WRONG =
o TYPE VI ERROR: INCORRECT RESULT WHICH =
P-values and statistical tests PRODUCES A COOL GRAPH (o)
P is the probability that you reject TYPE VI ERROR: INCORRECT RESULT WHICH a
null hypothesis just by chance SPARKS FURTHER RESEARCH
AND THE. DEVELOPMENT OF
NEW TOOLS WHICH REVEAL
P<0.05 means there is, in theor THE FLAL). W THE: ORIGINAL Clenc
:) 05 means there is, eory, a e bt s SCieNcE
<5% chance of a Type | error NOVEL CORRECT RESULTS

TYPE IX ERROR: THE RISE OF SKYWALKER




It’S easy to understand the Statistical HIGH Noise: 0.2, Detection power: 100.0%

Power (e.g., p) of an existing record.  °] i
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Factor

Impact to detection power as the
factor increases

Your question / statistical test ITB{I;/ElIGDS

Noise at the site '

The future pathway at your site’s s
IT DEPENDS

concentration will take

- The size of change

(]

- The difference between scenarios

]

Sampling frequency

U
t IT DEPENDS

Sampling duration

]
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Slope Detection

Do the observations show a trend, increasing/decreasing?
Tests: bo 8 L
- Linear regression & ’ o
(monotonic, parametric)

- Mann Kendall
(monotonic, non-parametric)

101

- Multipart Mann Kendall
(non-monotonic, non-parametric) "
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got: slope: 6.077e-02, pval:0.0 got: slope: -8.190e-02, pval:0.0




Mann Kendall test
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Counterfactual detection

Is pathway 1 significantly
different than pathway 2? :
- Isit less or more?
Tests:
- Paired T-test (paired,
parametric)
- Wilcoxon signed-rank test
(paired, non-parametric)
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Mean Modeljjo = 0.126 K
® raw data — ¢
Noise here e .
means the %o . .
: T i e e e T e ()
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variance of the i & , | )
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e rawdata e — [ m
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£ 04
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Sampling Duration:

detecting a change

The unhelpful silver bullet to
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Sampling annual data
Frequency: The I —_
expensive silver et ;
bullet to detecting 7| ¢+ . . .
a change™ : ; : : é -
quarterly data
Eé 4 ) ° ) o* .________________3_9-:___t-. ----- ;1:--:;"1FEL:L:"
monthly data
z ® . . ] .o ™ .0 .‘. ® .o.. ... ‘:".;:-o
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- “A higher frequency
sampling may introduce
more noise whereas the
proposed analysis seems
to make the assumption
that noise is
independent of sample
frequency. If higher
sample frequency
increases the proportion of
noise, then it may not
provide the conclusive
evidence that is being
suggested here.”
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“A higher frequency
samplln hal troduce

noise, then it may not
provide the conclusive
evidence that is being
suggested here.”

NO3-N (mg/L)
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0.4

0.2 4

0.4

0.2

0.4

0.2

__:a/jj::tii;\i‘/////~\\\\\’/////’\\\\\‘/////F\\\\\’/////_\\\\~‘////’-\\\

i
—————

-
—————

______ - “.. e Resampled data(anoua
f —--- Senslope fifl 0 = 0.011

----- "True data"

s ‘A;__'_‘-;_'_———A,*'"" ° Resampled data (biannually)
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- More data always yields more information*, but
you may need to work harder to extract it

*autocorrelation
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The ratio of noise : change is

more important than the
absolute noise or absolute
change in concentration

Concentration (mg/L)

Reduction: 10%, Noise: 0.2,
Detection power: 56%

Reduction: 25%, Noise: 0.2,
Detection power: 100%
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-~ N
Question

+

Pathway
+

Noise
+

Frequency
+
Duration

Detection
Power

= /

Detection Power (%)

Concentration (mg/L)
=
o

Well m36_0040
depth=59m, trend=increasing, p=0.01
lag=25.25 yr MRT inferred: median within 7500.0m +- 5.0m depth
noise=1.12 mg/L, slope=0.22 mg/L/yr, 2008-2012 concentration=9.44 mg/L
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Detection Power (%)

Effect of MRT on detection power at Harts Creek - Lower Lake Rd Reduction=20.0%
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Ok so...
... How.do we use this?

Goal

setting Catchment
groups

Network

design MET]e]
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Plan changes

NO3-N (mg/L)
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Theoretical plan reduce the source concentration

of Whakauru stream to 1.5 mg/l by 2040

NOs-N at Whakauru Stream
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Plan changes
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Theoretical plan reduce the source concentration

of Whakauru stream to 1.5 mg/l by 2040

—--- sen slope fit
® rawdata
sen slope fit: 3.95e-18
sen intercept: -5.20e+00
trend: increasing
p: 0.000
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Plan changes Theoretical plan reduce the source concentration
of Whakauru stream to 1.5 mg/l by 2040

Historical source concentration at Whakauru Stream
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Plan changes

NO3-N (mg/L)

Theoretical plan reduce the source concentration

of Whakauru stream to 1.5 mg/l by 2040

True receptor time series at Whakauru Stream
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Plan changes

Detection power allows
us to:

e Set expectations
o Might start to see
reductions after
15 years but it's
unlikely
o We should see
reductions after
20 years
e Set sampling
frequency:
o Need at least
monthly samples

Detection power

Detection power of Whakauru Stream
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Consent conditions New consent, which could increase
groundwater concentrations
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Thanks: Chiswick Chap - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=89087488; also J.R.R Tolkien




Consent conditions

Existing data (quarterly)

New consent, which could increase

groundwater concentrations

Monitoring data
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Consent conditions Modelled acceptable
and trigger scenario

Modelled data near well

| —®— near well ok scenario
—&— near well trigger scenario
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¢ How frequently do we need to sample to tell the
expected (ok) scenario from the trigger scenario?




Consent conditions

Applicant proposes to use
the current quarterly
sampling to assess the
impacts of the activity

Detection power analysis
suggests that quarterly
monitoring would not be
sufficient to distinguish
the two scenarios. At a
minimum monthly
sampling is needed, but
fortnightly sampling at
the far well would likely
allow characterisation
within 1 year

Sampling frequency (per year)

Sampling frequency (per year)
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Our national
monitoring networks
are not well suited to
detecting change

Fixing this is expensive
- Dumont et al.,
(in submission)
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Source Concentration

12 A

10 A

Source - 5t - 95th

_ mmm Source - 25 - 75th
—— Source median
—-==- end of observed period
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We break things
fast, and
fix things slow
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It's probably impossible to build a
statistically robust monitoring network
which fully accounts for spatial
variability— Targeted monitoring

Ajjigeuen jenedg

National

SCieNCE

Challenges




Bespoke network design and review process:

1. Initial network design:
a. Define mitigation plans/scenarios and monitoring goals
b. Develop a conceptual model of the monitoring area: (nitrate load
distribution, reduction rates, travel paths, attenuation and transit times)
Identify key knowledge gaps
d. Integrated analysis of groundwater and surface water detection power for
existing sites
e. Evaluate representativeness of priority monitoring sites
f. ldentify new monitoring sites (if needed)
g. Undertake a sampling frequency cost-benefit analysis
2. Review network frequently (e.g., after 1, 3, 5 years) —
a. Have detection power and timeframe requirements have changed in light RS
of new information.
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